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AESTFUCT : In real-time Kalman filter applications involving clocks, it is common practice 
to model the clock errors with simply two state variables, namely phase and frequency. It 
has been pointed out in previous FTTI papers that such models are suboptimal because they 
cannot accomodate flicker noise components exactly, Thus it is desirable to have a means 
of assessing the "goodness of fit" of a proposed 2-state model in the particular application 
at hand. The methodology suggested here involves first choosing a higher-order model 
which is used as a truth model for purpose of analysis. The suboptimal gains generated by 
the 2-state model being assessed are then cycled through the truth model to generate 
realistic error covariances to be associated with the suboptimal filter. This method of 
assessing the degree of suboptimality of the Zstate model is especially useful in prediction 
application where the At interval is relatively large. Subtleties and possible pitfalls in the 
design of the truth model are discussed in the paper, and examples are presented. 

1. Introduction 

It has been pointed out in previous PITI papers[l,2] that flicker noise cannot be 
modeled with a finite-order state model. Thus one must accept some degree of 
suboptimality in the design of a Kalman filter for any clock where flicker noise is an 
appreciable part of the random process. The design objective then must be to choose a 
reasonable state model which yields a good approximation of the clock's random processes 
over the range of interest in the application at hand. For example, in a GPS receiver the 
measurement information for updating the clock comes at a fairly rapid rate, so the clock 
model can be rather crude. On the other hand, in applications where the clock must predict 
time over a considerable span, it might be necessary to have a more elaborate state model in 
the Kalman filter. In either event, it is important to be able to assess the validity of the 
medel for the application at hand, and this is the main thrust of this paper. The procedure 
for performing the assessment is to first develop a higher-order model which represents the 
clock's random processes faithfully over a wide range of parameters. This is considered to 
be the "truth model", The Iesser-order design being considered for real-time 
implementation is then compared with the truth model. It will be seen presently that there 
are subtleties in making this comp~ison, and these will be discussed in the subsequent 
sections. 

2. Methodology for development of truth model 
flicker Noise 

Flicker noise process is defined to have a spectral density of l/lwl. Many ways have 
been proposed to model flicker noise process and generate a process having flicker noise- 
like characteristics. All methods are just approximations of the flicker noise prcxess [3]. 



Let us first consider a shaping filter approach for generating a flicker noi e process. If 
a white noise input is applied to a shaping filter whose transfer function is 11 J s, then the 
output will have flicker noise characteristics, The impulse response of such filter becomes 

where to is the initial time. Note that h(t,to) is not decomposable into a product of arbitrary 
functions of M(t) and N(k) such that h(t,k) = M(t)N(tO). Thus according to linear system 
theory [4], the system cannot be realized by a finite-dimensional linear system. The 
dimension of the system must be infinite. Hence, any model of clock noises with finite- 
dimension must be an approximation. 

In order to obtain a finite dimensional linear system for a flicker noise process, we will 
examine a Pade approximation method. This method can provide an approximate rational 
function of s for an irrational transfer function of the form 114s. 

pad6 Approximation I 

The Pad6 approximation is such as to generate a rational fraction approximation to the 
value of a function f(s) at a point. It matches a formal series expansion as far as possible. 1 

Here "formal series" means that it may diverge when the function is expanded in series. 
Consider a function f(s) = 114s at s = 1. Its series expansion is assumed as follows: I 

Then, a one-sided [m,n] pad; approximant Rmn(s) for f(s) is defined as follows [5,6]: 

where P,(s) and Q,(s) are poly nomials in s and are coprime to each other. 
Or 

Coefficients of P,(s) and Q,(s) are determined by 

f(s) - R (s) = B ( S ~ + ~ + ' )  
m,n 

where O is a 'big 0'. 



From equations (3) and (4), we have 
2 2 n 2 

(C, + C,s + C,s + .... ) (q, + qls + q,s + ... + qns ) - (p, + p,s + p2s + +... t pmsm) 

= 0 ( p n t  ' ) 
Equating coeff icients of like powers of s leads to a set of linear algebraic equations. For 
normalization, set Q,(O) = qo = 1. 
Then 

Po = Coqo (9 

PI = C,q, + cOql 

P2 = c,qo + c ,q, + C,q, 

whereC,=Oifm<Oandq-Oifj>n. 
J -. 

The solution to the above equahon is uniquely determined provide9 that the Hankel matrix 
of the system is nonsingular [S]. In Table 1, partial entries of Pade approximants are 
listed. 

It is known that, for accurate approximation over finite ranges of frequency, it is best 
to choose orders m and n of numerator and denominator polynomials to be equal, or nearly 
equal 161. In linear system theory, a transfer function is realizable by a finite dimensional 
linear system, if and only if it is a proper rational function [4]. Thus, a lypical choice of m 
and n to satisfy the realizability condition is that the order of denominator be greater than 
that of numerator, i.e., n -m > 0. We will mainly consider the case n -m =1 among many 
possible rational approxirnants. This corresponds to superdiagonal entries in the Pade 
table. Elements in the table other than the diagonal and superdiagonal ones are unstable 
because of negative cxfficients, Diagonal and superdiagonal entries have negative real 
poles and zeros; hence they can be realized as stable systems. They also have a minimum 
phase. But by choosing superdiagonal entries for realization, we can not only ensure the 
stability, but also finite output variance. 

In Figures 1 and 2, freq~ency and unit-step time responses of diagonal and 
superdiagonal entries of Pade approxirnants are shown. 



Finally, poles and zeros of diagonal and superdiagonal entries are given as follows: 

2 ( 2 k + l ) ~  m n -  1 poles: Pk = -tan 
2(m+ni- 1) 9 k = o , l ,  - a *  

zeros: Zk = -tan 2 kn tlwn , k = l , 2 ,  ... ,[-I 
(m+n+ 1) 2 

where [r] implies the greatest integer S r. Poles and zeros are located alternately on the 
negative real axis which is a branch cut of 114s. 

3. Cycling suboptimal gains through truth model 

el of clock nolses 
From Pad6 approximants, we get an approximate rational transfer function R,@) for 

a realization of the flicker noise-like characteristic. 

The output of R,,.,(s) has an approximate flicker noise-like characteristic when the input is 
a white noise, It is assumed that the order m of the numerator polynomial is chosen to n- 1 
in order for the output variance to be finite. 

The total clock noise can now be obtained as a sum of inherent clock noise processes, 
i.e:, white noise, flicker noise, random-walk noise, and other higher-order or lower-order 
noise processes. In practice, it is often assumed that the clock error can be well represented 
by considering just three clock noises - white noise, flicker noise, and random-walk noise. 
Based on this assumption, we can draw a block diagram of clock noise model as shown in 
Figure 3. In Figure 3, the input white noises are independent of each other 

The power spectral density (PSD) of Sn(w) of instantaneous fractional frequency 
deviation R(t) is given by 

where ho, hLl, and h-? are the usual Allan variance parameters [7]. 
From Figure 3 and equation (7), we will now redraw the clock noise model as shown 

in Figure 4. 
A state-space representation of the clock noise model based on Figure 4 can now be 

written as follows: 



It is convenient now to make a parallel decomposition of R,-l,,(s) in Figure 4. This leads 
to the block diagram shown in Figure 5. From Figure 5, we have a new state-space 
dynamic equation as follows: 

The advantage for doing this is twofold. First, the system configuration becomes less 
complicated, State variables may be assigned easily according to size of eigenvalues. 
Secondly, we may delete some state vectors which have very large or very small time 
constants, and thus these states are negligible in the overall system performance in a certain 
period of time. Or, we can identify important system modes and understand the system 
better. Hence, a dimensional reduction of the system may be easily achieved. 



a r m e t a  
It is straightforward to obtain a Kalrnan filter from the state-space equation (10). For 

notation, refer to a reference [&I. State transition matrix @(At) is given by 

The covariance matrix Q for the discretized noise process wk is given by D 
t 

where QA E ~(2x2 ) ,  QB E ~(2xn),  and QD E R("x") 

Each sub-matrix can now be obtained as follows: 
For entries of sub-matrix QA, they are 

2n" 3 + -h (At) 
3 -2 

KiKj -+At - h a t  -(hi + h .) At 
1 -e 1-e J 1-e J -{ At-  i+ 

hi$ L I L 4 t 1, > ~ h - ,  
J 



For entries of QB, 

-A. At -(++A] At 
" 1  1 - e J  l-e 

= C - ( - ) K i K j C l  for 1 I i, j 5 n (12.b) 
i=1 4 hi a+ L. J 

For entries of QD, 

1 -e 
QD(ij) = 

At  
KiK,*, for IS i , j  I n 

4 4- hj 

For a detailed derivation of @(At) and Q, see a reference (91. 

Error Analvsis and suboptimal filtering 
Since our objective is to study error accumulation in the developed clock noise model, 

error analysis is needed using a Kalman filter. It was shown that the error covariance 
matrix can be propagated without forming state estimates in the Kalman filter equations. 
Hence, less steps can be taken in the Kalrnan filter equations by skipping the state 
estimations steps. 

If accurate behavior of the flicker noise is essential, then the number of parallel blocks 
used to represent 114s may have to be fairly large. This is quite pnmissible in off-line 
analysis, and let its order be n. Then let us call this (n+2) dimensional system the "truth 
model" and from this truth model, construct a suboptimal filter by considering a subset of 
the system components of the truth model. Here, the suboptimal filter can be formed by 
retaining state vectors which represent significant modes of the system and discarding less 
significant ones. 

In our study, the suboptimal filter considered was choosing the first two state vectors 
from the truth model state-space equation (10) with a different set of noises. It can be 
written as follows: 

where wl and w2 are white noise processes to be chosen appropriately. 
In order to choose wl and w2, observe the following facts. Random-walk noise is 

more divergent than the flicker noise. Actually, the flicker noise has a logarithmic 
divergence characteristic. Hence, the random-walk noise dominates the flicker noise in the 
long run. Since we are interested in the long-term behavior (t 2 1)  of clock error due to 
these three noise processes in the rruth model, these facts can be utilized to choose noise 
components, wl and wz, of the suboptimal filter, properly. 

Definitely, the random-walk noise must be present. White noise may be retained to 
represent instantaneous fluctuations in the system. In addition, it is trivial to realize, thus 
the presence of the white noise does not add any complexity to the system. The flicker 
noise is deleted since its characteristic is in between the random-walk and white noise 
processes, and its effect will be absorbed to some extent in wl and w2. 



To assesserrors in the suboptimal filter, the truth model Kalman filter is run in parallel 
with the suboptimal filter. See Figure 6. There are two truth model Kalman filter loops. 
One is run with optimal gains and the other with suboptimal gains. The suboptimal filters 
produces suboptimal gain sequence when supplemented with zeros for the higher-order 
gains. 

Qwtimal prediction error by B d e - S h m n  method 
The optimal prediction error variance for the clock phase x l ( t )  in the Kalrnan filter can 

be obtained by projecting ahead N steps in the truth model. However, the Bode-Shannon 
method also provides an alternative way of obtaining an analytical expression for the 
projection error, Furthermore, it does not involve any approximations, as is the case with 
the truth model used in the Kalrnan filter analysis. For detail, see a reference [lo]. Here, 
we present only results: 

1 2 2 
Optimal prediction error = -h, At + ~h-~(At )  + -n2hJ~t? 

2 3 (14) 

From the expression, we can clearly see that the random-walk noise eventually dominates 
the other two. For instance, with same input noise powers in three noise processes and At 
= 1, the random-walk phase noise becomes 10 times larger than the flicker phase noise 
only after 18 steps. One thing to note is that opt imal prediction error expression coincides 
with that of QA(l,l) in equation (12.a). 

4. Numerical Example 
- I 

In this section, we will study clock error propagation in the truth model and 2-state 
suboptimal models with different Q matrices. For simplicity, we select a 5-state truth 
model which consists of white noise, random-walk noise, and third-order Pade 
approxirnant R2 3 for flicker noise. Time response of Rg3(s) in Figure 2 closely follows 
the flicker noi~e'~rocess in the time interval, approximately from 0.07 to 13.9 seconds, 
corresponding to eigenvalues { -0.0718, -1, -13.9282 ). Time step size is chosen to be At 
= 1 which belongs to the interval. 

For initialization of Kalman filter, we assume that a priori estimate %- = 0, and a priori 1 
error covariance Po- = 0. With regard to the measurement noise, we set Rk = 0.625~10-17 
in both the 5-state and Zstate suboptimal models. To calculate Q matrices, the following hi 
prarrneters were used [I]: 

ho = 9.43 x h-l = 1.8 x l0-l9, and h_2 = 3.8 x 10-2l 

5-state truth m d e l  
The truth model state equations are 



where 

Then, the state transition matrix 0 with At = 1 is obtained from equation (1 1). 

The Q matrix is obtained from equation (12), and using the assumed h,, h-l, h-2. 

2-state suboptimal model wth 
. . 

Mere - 

State transition matrix is identical with upper left (2x2) submatrix of the 5-state truth 
model. Determination of Q matrix in the Zstate suboptimal model is crucial to closely 
follow the behavior of the truth model. Four candidates for the Q matrix will be selected 
and compared each other for error propagation. This may aid in the selection of a proper Q 
matrix which best fits the suboptimal model. 

Four Q matrix candidates are chosen as follows: 

candidate 1: Upper left (2x2) submatrix of the truth model Q matrix in equation (12.a) is 
adopted. 

- 
2 2n2 

+-h (At) 3 

3 -2 n2h'2h-2(~t)2 Q =  
n2h-,(~tf 2 x 2 h - p  

, 



candidate 2: It is formed by considering white noise and random-walk noise for wl and 
w2, respectively. Since flicker noise is less divergent than random-walk noise and usually 
complex to represent. Hence, the flicker noise processs is excluded. 

candidate 3: In reference [I], a different Q mahix is suggested for the same 2-state 
suboptimal model. 

candidate 4: In reference [2], another form of Q matrix is reported. 

With these different Q matrices, Kalman filters of the 5-state and Zstate suboptimal 
models are run in parallel, as shown in Figure 6. 

Discussion 

Estimation error standard deviation for 170 steps have been plotted in Figure 7, From t 
= 0 to t = 49At with step size At = 1, it is assumed that no measurement is available for 
'free running' purpose. From t = 50At to t = 69At, measurement starts for estimation and 
Rk is set to 0.625 x 10-17. It shows that, after several steps, the standard deviations 
rapidly converge to a constant value. At t = 70At, filters are again in the free running mode 
for the next 100 steps. 

From Figure 7, we may say that every candidate of the 2-state suboptimal model shows 
no big departure from the truth model except the third one among four Q matrix candidates. 
The third one is slightly larger, but not noticeable in the plot. This is expected since Q(1,l) 
of the Q matrix in equation (12.a) has the same formula as each candidate. In Figure 8, the 
suboptimal error analysis is performed with a 6-state truth model. This consistently agrees 
with results of the 5-state truth model. 



Prediction error standard deviations of both the 5- and 6-state truth models do not show 
much departure from each other in case of time step size At = 1. See Figures 9 and 10. 
Deviation of prediction errors from the optimal one obtained by the Bode-Shannon method 
is about 30 % greater at the prediction of 80 steps, 

In the Q matrices for 2-state suboptimal model, all four candidates except the third have 
same prediction errors and closely follow the truth model as in the estimation case. In the 
third candidate, the prediction error becomes slightly larger than any others after 80 steps. 
Only in the second candidate, the prediction error is slightly less because of the absence of 
the flicker noise component in the Q matrix. This tells us that the long-term effect due to 
the flicker noise is negligible in most cases (t 2 1). 

5. Conclusions 

We have demonstrated that a higher-order truth model can be used off-line to assess 
the validity of a lower-order which is intended to be used on-ine. One should be careful to 
note though that no model of finite order can be expected to represent flicker noise over all 
possible ranges of parameter. Thus, one has to tailor the reference or truth model to the 
application at hand. 

The time domain approach is especfblly useful in assessing prediction errors. This is 
because the 114s transfer function has a perfectly well-behaved unit-step response. Thus, 
if the approximate model response follows the ideal response closely over the prediction 
interval, one can be fairly confident that the approximate model will give good results for 
that particular prediction interval. 
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Fig. 2. Unit-step time response of R ( s )  
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Fig. 6. Recursive loop for suboptimal error analysis 
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€$nBTIONS AND Atwwrm 

IWRK WEISS, NATIONAL BUREAU OF STANDARDS: I find this very interesting. It 
seems, if I understand it correctly, that you can use a two state Kalman fil- 
ter with no flicker noise parameters included and get as good as a truth 
model. 

MR. AHN: It depends an your time interval. If the step size is bigger than 
one, then the flicker noise is less dominant than the random walk noise 
process. As time goes on, the random noise process is more dominant than i 

flicker noise. Then we just consider the two state model without the flicker 
noise process. I 

d 
P 

DAVID AUAN, NATIONAL BUREAU OF STANDARDS: The comparison here on the last 
chart is a little deceptive because on a log plot the comparison in the worst 
region is nearly a factor of two different. The variation butween t h e  sub- 
optimum and the t r u t h  model is nearly a factor of two. 

MR. AHN: This one is not realizable., it is just theoretical. 

MR. AUAN: I understand. 

MR. AHN: There is no big difference between the t m t h  model and t h e  two state 
sub-optimal model if you choose the matrix properly. 

MR. ALLAN: I guess t h a t  what I am trying to say is that optimum prediction for 
white frequency modulation and r<zndom walk frequency mdulaLiorl is a very 
si.mple algorithm. You can approximate this ideal very closely. Better than is 
shown here. 

I 

MR. AHN: That is right. 


